HEC-IWG FS&I/O R&D
Workshop

Randy Melen
SLAC/SCCS
August 16, 2005

e Qur environment

— ~ 2PB of active data for BaBar experiment, but
growing still

— Data analysis (mining) done with random reads of
small blocks (2KB down to 100 bytes)

— A researcher typically has several hundred
simultaneous analysis streams (in batch)

— And several hundred concurrent researchers are
active

* Our problem

— So several thousand simultaneous streams
of random (unpredictable, readahead
doesn’t help) read requests to disk

— Latency from client request to receiving
data is 7000 to 12000 microseconds

— Data space is probably 10 to 32TB right
now, probably 256 TB within a few years

We need latencies between disk and DDR
memory latencies

So why not just buy a very big SMP from the
usual vendors with massive memory?

Because we also need a price point between
disk and DDR memory

We do not need cache coherency for our
read-mostly requirement

* To begin exploring this area, we have built a
“toy” 64-host 1TB memory cluster using
commodity hardware with DDR memory

« DDR memory is still too expensive to scale up
to 10 to 32TB that is needed for a real test

« Using xrootd from the HEP world to test
usefulness

« Stress tests done with no client computation,
just data access

* Measured latency drops to about 200
microseconds

LAC Scientific Computing Drivers

BaBar (data-taking ends December 2008)
— The world’s most data-driven experiment
— Data analysis challenges until the end of the decade

« KIPAC
— From cosmological modeling to petabyte data analysis

* Photon Science at SSRL and LCLS
— Ultrafast Science, modeling and data analysis

» Accelerator Science
— Modeling electromagnetic structures (PDE solvers in a demanding application)

 The Broader US HEP Program (aka LHC)
— Contributes to the orientation of SLAC Scientific Computing R&D

7.-% Future Work: Latency Reduction
= (All require work with vendors)

* Operating system and TCP stack
enhancements

 TCP stack bypass
— RDMA

— MPI-optimized service
* Network card driver optimization
* TOE (not good if bandwidth-focused)

“W=lse of Prototype for SLAC Science

« BaBar
— Host part of the (~30 TB) microDST data
— Access data via “pointer skims”

— Both normal production use and intensified tests
with ‘real’ access patterns an super-real access
rates.

 GLAST

— Will require a ~2TB intensely accessed database.
Have asked to test concepts on the PetaCache
Prototype

« LSST Database Prototyping

— Proposed tests using the PetaCache prototype

Development Machine

* |deas for Storage-Class Memory

 Likely configuration

10

Storage-Class Memory

* New technologies coming to market in
the next 3 — 10 years (Jai Menon —
IBM)

« Current not-quite-crazy example is flash
memory

11

Flash Memory

amazon.com. N VIEW CART | WISHLST | (YOURACCOUNT) | HELP

APPAREL & COMPUTER & SEE MORE
WELCOME ACCESSORIES m VIDED GAMES STORES

EROWSE BRANDS TOP CAMERA . . . AUDIO TODAY'S | OUTLET, U
% PRODUCTS | SELLERS | & PHOTO | computers | soFTware | & YIDED | DEALS | REFURBT!

Sandisk 2GB Compactflash Card Type I (SDCFB-2048-A10)
Other products by Sanbisk

Price: $137.67

Availability: Usually ships in 1-2 business days from Adorama Camers

29 used & new from F137.67

12

Development Machine
Plans

Data-Servers 30 Nodes, each
N N R N N 2 Opteron CPU, 1TB Flash memory
~ 30TB total Memory S LAC B
-BaBar

Solaris/Linux

System

Switch (10 Gigabit ports) *

Clients up to 2000 Nodes, each
2 CPU, 2 GB memory
inux

L
Data-Servers 80 Nodes, each
8 Opteron CPU, 128 GB memory
Up to 10TB total Memory
Solaris/Linux

Cisco Switch Fabric

Petagache / / \ \
0808080

Summary

Data-intensive science increasingly requires low-latency access
to terabytes or petabytes

Memory is one key:
— Commodity DRAM today (increasing total cost by ~2x)
— Storage-class memory (whatever that will be) in the future

Revolutions in scientific data analysis will be another key

— Current HEP approaches to data analysis assume that random
access is prohibitively expensive

— As a result, permitting random access brings much-less-than-
revolutionary immediate benefit

Use the impressive motive force of a major HEP collaboration
with huge data-analysis needs to drive the development of
techniques for revolutionary exploitation of an above-threshold
machine.

14

PetaCache

Huge-Memory Architecture
for
Data-Intensive Science

Richard P. Mount
SLAC

August 16, 2005

15

PetaCache Goals

* The PetaCache architecture aims at
revolutionizing the query and analysis of
scientific databases with complex structure.

— Generally this applies to feature databases
(terabytes—petabytes) rather than bulk data
(petabytes—exabytes)

* The original motivation comes from HEP

— Sparse (~random) access to tens of terabytes
today, petabytes tomorrow

— Access by thousands of processors today, tens of
thousands tomorrow

16

rototype Machine
Design Goals

— Big enough data-cache capacity to promise revolutionary
benefits

— 1000 or more processors
* Processor to (any) data-cache memory latency < 100
us

» Aggregate bandwidth to data-cache memory > 10
times that to a similar sized disk cache

« Cost effective, but acceptably reliable
— Constructed from carefully selected commodity components
17

rototype Machine

Design Choices

Intel/AMD server mainboards with 4 ECC
dimm slots per processor

2 Gbyte dimms ($550 each)
4 Gbyte dimms ($7,000 each) too expensive this year

64-bit operating system and processor
— Favors Solaris and AMD Opteron

Ethernet switches are most cost-effective

Use of ($10M+) BaBar disk/tape infrastructure,
augmented for any non-BaBar use

18

Prototype Machine
(Operational)

Cisco Switch

Clients
up to 2000 Nodes, each
2 CPU, 2 GB memory
Linux

Data-Servers 64-128 Nodes, each
Sun V20z, 2 Opteron CPU, 16 GB memory
Up to 2TB total Memory
Solaris or Linux (mix and match)

Cisco Switches

PetaCache / / \ \
MICS + HEP-

o 0008000

Existing HEP-Funded
BaBar Systems

SLAC-BaBar Computing Fabric

Client Client Client Client Client Client 1700 dual CPU Linux

400 single CPU
@Sun/Solaris

HEP-specific ROOT software (Xrootd) +
Obijectivity/DB object database

%

Disk i i i i i 120 dual/quad CPU
Server Sun/Solaris

~400 TB Sun
i > Wesrger i S D ﬁ S=S=Ps= ﬁ FibreChannel RAID
@rrays

HPSS + SLAC enhancements to
ROOT and Objectivity server code

2

Tape Tape Tape Tape Tape 25 dual CPU
Server Server Server Server Server Sun/Solaris

40 STK 9940B
QQQAQQAQQAQQQ e
6 STK Powderhorn

over 1 PB of data 20

IP Network

IP Network
(Cisco)

Object-Serving Software

« Xrootd/olbd (Andy Hanushevsky/SLAC)

Optimized for read-only access

File-access paradigm (filename, offset, bytecount)
Make 1000s of servers transparent to user code
Load balancing

Self-organizing

Automatic staging from tape

Failure recovery

« Allows BaBar to start getting benefit from a new data-access
architecture within months without changes to user code

« The application can ignore the hundreds of separate address
spaces in the data-cache memory

21

“=/Making the Server Perform

* Solve only the problem at hand

— Avoids high overhead but unused features
— xrootd is only a Data Access System

— It may look like a file system but it is not
one

* Avoids high overhead consistency semantics

* Not needed in write once read many
applications

This is common sense that is hard to follow
22

-/ Basic Cluster Architecture

o Software cross bar switch

— Allows point-to-point connections

* Client and data server

— 1/O performance not compromised

« Assuming switch overhead can be amortized

* Scale interconnections by stacking
switches
— Virtually unlimited connection points

« Switch overhead must be very low
23

Redirectors
Cache file

location

Client ' Redirector
' (Head Node)

Client sees all servers as xrootd data servers

Cluster

24

Client o X -
| \ﬂﬁﬁ
open file X W Data Servers

. oto F
Redirector 2

open file X . (Head Node) (sub-redirector)

Cluster

Client sees all servers as xrootd data servers

25

Example: SLAC Configuration

kan(1 kan(2 kan(3 kan(4 kanxx

client machines

Hidden Details

26

Making Clusters Efficient

« Cell size, structure, & search protocol are critical

— Cell Size is 64
 Limits direct inter-chatter to 64 entities
« Compresses incoming information by up to a factor of 64
« Can use very efficient 64-bit logical operations

— Hierarchical structures usually most efficient
« Cells arranged in a B-Tree (i.e., B64-Tree)
« Scales 64" (where h is the tree height)
— Client needs h-1 hops to find one of 64" servers (2 hops for 262,144 servers)
— Number of responses is bounded at each level of the tree
— Search is a directed broadcast query/rarely respond protocol

* Provably best scheme if less than 50% of servers have the wanted file
— Generally true if number of files >> cluster capacity
— Cluster protocol becomes more efficient as it grows

27

“-/Cluster Scale Management

« Massive clusters must be self-managing

— Scales 64" where n is height of tree
 Scales very quickly (642 = 4096, 64° = 262,144)

* Well beyond direct human management
capabilities

— Therefore clusters self-organize

» Uses a minimal spanning tree algorithm
— 280 nodes self-cluster in about 7 seconds
— 890 nodes self-cluster in about 56 seconds

* Most overhead is in wait time to prevent
thrashing

28

Latency (1)
|deal

29
Richard P. Mount, SLAC August 2005

Latency (2)
””""*"f’Current reality for Disk-based Servers

Data Server
/ N
OS OS
File System TCP Stack
NIC

3

Client Application

Data-Server-Client

OS

TCP Stack

NIC

L

Network
Switches

-

30

Latency (3)
“ Practical Goal for Prototype

Memory

Data Server

~

OS

TCP Stack

NIC

Client Application

Data-Server-Client

OS

TCP Stack

NIC

o

Network
Switches

|

31

(7% Latency (microseconds) versus data
retrieved (bytes)

250.00

200.00 A

—— Server xrootd overhead

— Server xrootd CPU

— Client xroot overhead

— Client xroot CPU

— TCP stack, NIC, switching
Min transmission time

150.00

100.00 1

50.00 H
0.00
QO O O O O O O O O O O O O O O O O
Q" O QO O QO O QO O QO QO Q0 QO O QO
NS A R R RS

32

‘I Throughput Measurements

100000

90000 1

80000
2 70000 -
9 =0—_C—0
é» 60000 -
S
2 === inux Client - Solaris Server
@ 50000 H ==L inux Client - Linux Server
o =@ Linux Client - Solaris Server bge
il
8 40000
0
c
®
= 30000 -

22 processor
20000 - :
microseconds per
10000 | transaction
0

1 5 10 15 20 25 30 35 40 45 &0

Number of Clients for One Server 33

xrootd self-organiation

Number of | Time required to self- Time =

xrootd/olbd |organize (seconds) an”™

servers (n)

280 I4

390 86 (first start to last finish) |x = 1.9
o6 (last start to last finish) |x = 2.3

34

